Oxysterol 7-α Hydroxylase (CYP7B1) Attenuates Metabolic-Associated Fatty Liver Disease in Mice at Thermoneutrality

Author:

Evangelakos IoannisORCID,Schwinge Dorothee,Worthmann Anna,John Clara,Roeder Niklas,Pertzborn Paul,Behrens JaninaORCID,Schramm Christoph,Scheja Ludger,Heeren Joerg

Abstract

Ambient temperature is an important determinant of both the alternative bile acid synthesis pathway controlled by oxysterol 7-α hydroxylase (CYP7B1) and the progression of metabolic-associated fatty liver disease (MAFLD). Here, we investigated whether CYP7B1 is involved in the etiology of MAFLD under conditions of low and high energy expenditure. For this, Cyp7b1−/− and wild type (WT) mice were fed a choline-deficient high-fat diet and housed either at 30 °C (thermoneutrality) or at 22 °C (mild cold). To study disease phenotype and underlying mechanisms, plasma and organ samples were analyzed to determine metabolic parameters, immune cell infiltration by immunohistology and flow cytometry, lipid species including hydroxycholesterols, bile acids and structural lipids. In WT and Cyp7b1−/− mice, thermoneutral housing promoted MAFLD, an effect that was more pronounced in CYP7B1-deficient mice. In these mice, we found higher plasma alanine aminotransferase activity, hyperlipidemia, hepatic accumulation of potentially harmful lipid species, aggravated liver fibrosis, increased inflammation and immune cell infiltration. Bile acids and hydroxycholesterols did not correlate with aggravated MAFLD in Cyp7b1−/− mice housed at thermoneutrality. Notably, an up-regulation of lipoprotein receptors was detected at 22 °C but not at 30 °C in livers of Cyp7b1−/− mice, suggesting that accelerated metabolism of lipoproteins carrying lipotoxic molecules counteracts MAFLD progression.

Funder

Deutsche Forschungsgemeinschaft

State of Hamburg

Publisher

MDPI AG

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3