Author:
Xing Yuxin,Vincent Timothy,Cole Marina,Gardner Julian
Abstract
A new signal processing technique has been developed for resistive metal oxide (MOX) gas sensors to enable high-bandwidth measurements and enhanced selectivity at PPM levels (<5 PPM VOCs). An embedded micro-heater is thermally pulsed from a temperature of 225 to 350 °C, which enables the chemical reaction kinetics of the sensing film to be extracted using a fast Fourier transform. Signal processing is performed in real-time using a low-cost microcontroller integrated into a sensor module. Three sensors, coated with SnO2, WO3 and NiO respectively, were operated and processed at the same time. This approach enables the removal of long-term baseline drift and is more resilient to changes in ambient temperature. It also greatly reduced the measurement time from ~10 s to 2 s or less. Bench-top experimental results are presented for 0 to 200 ppm of acetone, and 0 ppm to 500 ppm of ethanol. Our results demonstrate our sensor system can be used on a mobile robot for real-time gas sensing.
Funder
Horizon 2020 Framework Programme
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献