Bark beetle detection method using electronic nose sensors. A possible improvement of early forest disturbance detection?

Author:

Hüttnerová Tereza,Surový Peter

Abstract

Forest ecosystems are long-term exposed to dry periods in Europe, which leads to a significant loss of vitality and higher mortality, especially in coniferous forests. Identifying stress in the early stages when measures can be taken to protect the forest and living trees is crucial. Current detection methods are based on field surveys by forest workers or remote sensing methods to cover larger areas, which use changes in spectral reflectance of the forest canopy. In some cases, the attacked trees do not change their appearance, and based on calculations of vegetation indices from remote sensing data, the attack cannot be mapped. We present an innovative methodology based on non-optical analysis, namely identifying a group of volatile compounds and microclimate signs in forest stands that indicate stress factors in forest stands. An attacked tree by a bark beetle produces increased amounts of biogenic volatile organic compounds associated with defense, and the microclimate changes due to interrupted transpiration. In addition, the bark beetle uses the aggregation pheromone to attract more individuals and to attack the tree massively. In this study, we tested three electronic noses (Miniature Bosch sensor device with 25,419 samples, Sensory device for environmental applications with 193 samples, Handheld VOC Detector Tiger with 170 samples) in a freshly infested spruce stand. The measurement was conducted at ground level with the help of a human operator and was repeated six times to verify the detection capability of the electronic noses. To verify the capability of electronic noses to predict tree infestation, we used machine learning Random Forest. The results demonstrated that electronic noses can detect bark beetle infestation start (within 1 week of the first attack). The Miniature Bosch sensor device achieved the highest accuracy with a value of 95%, in distinguishing forest sections that are healthy and infested; the second most accurate electronic nose is the Sensory device for environmental applications, with an accuracy of 89%. Our proposed methodology could be used to detect bark beetle presence.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3