Surface and Underwater Acoustic Source Recognition Using Multi-Channel Joint Detection Method Based on Machine Learning

Author:

Yu Qiankun1ORCID,Zhu Min1,Zhang Wen1ORCID,Shi Jian1,Liu Yan1

Affiliation:

1. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China

Abstract

Sound source recognition is a very important application of passive sonar. How to distinguish between surface and underwater acoustic sources has always been a challenge. Due to the mixing of underwater target radiated noise and marine environmental noise, especially in shallow water environments where multipath effects exist, it is difficult to distinguish them. To solve the surface and underwater acoustic source recognition problem, this paper proposes a multi-channel joint detection method based on machine learning. First, the simulation data are generated using the normal model KRAKEN setting in the same environment as the SACLANT 1993 experiment, which uses a vertical linear array of 48 hydrophones. Secondly, the GBDT classifier and LightGBM classifier are trained separately, and then the model is evaluated using precision, recall, F1, and accuracy. Finally, four ML models (kNN, random subspace kNN, GBDT, and LightGBM) are used to analyze all 48 channels of hydrophone data. For each model, two kinds of feature extraction methods (module features, real and imaginary features) are applied. Generally, the results show that both GBDT and LightGBM models have better performance than both kNN and random subspace kNN ones. For both GBDT and LightGBM models, the results using module features have better performance than using real and imaginary features.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference27 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A high-precision localization method for underwater targets incorporating direct path recognition and sound rays bending compensation;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2024-08-24

2. Surface and underwater acoustic target recognition using only two hydrophones based on machine learning;The Journal of the Acoustical Society of America;2024-06-01

3. Advances and applications of machine learning in underwater acoustics;Intelligent Marine Technology and Systems;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3