An Augmented Reality Geo-Registration Method for Ground Target Localization from a Low-Cost UAV Platform

Author:

Ren Xiang,Sun Min,Jiang Cheng,Liu Lei,Huang WeiORCID

Abstract

This paper presents an augmented reality-based method for geo-registering videos from low-cost multi-rotor Unmanned Aerial Vehicles (UAVs). The goal of the proposed method is to conduct an accurate geo-registration and target localization on a UAV video stream. The geo-registration of video stream requires accurate attitude data. However, the Inertial Measurement Unit (IMU) sensors on most low-cost UAVs are not capable of being directly used for geo-registering the video. The magnetic compasses on UAVs are more vulnerable to the interferences in the working environment than the accelerometers. Thus the camera yaw error is the main sources of the registration error. In this research, to enhance the low accuracy attitude data from the onboard IMU, an extended Kalman Filter (EKF) model is used to merge Real Time Kinematic Global Positioning System (RTK GPS) data with the IMU data. In the merge process, the high accuracy RTK GPS data can be used to promote the accuracy and stability of the 3-axis body attitude data. A method of target localization based on the geo-registration model is proposed to determine the coordinates of the ground targets in the video. The proposed method uses a modified extended Kalman Filter to combine the data from RTK GPS and the IMU to improve the accuracy of the geo-registration and the localization result of the ground targets. The localization results are compared to the reference point coordinates from satellite image. The comparison indicates that the proposed method can provide practical geo-registration and target localization results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3