An AR Geo-Registration Algorithm for UAV TIR Video Streams Based on Dual-Antenna RTK-GPS

Author:

Ren Xiang,Sun Min,Zhang XianfengORCID,Liu Lei,Wang Xiuyuan,Zhou HangORCID

Abstract

In emergency response and disaster rescue, unmanned aerial vehicles (UAVs) onboard thermal infrared (TIR) sensors are an essential means of acquiring ground information in the nighttime working environment. To enable field personnel to make better decisions based on TIR video streams returned from a UAV, the geographic information enhancement of TIR video streams is required. At present, it is difficult for low-cost UAVs to carry high-precision attitude sensors and thus obtain high-precision camera attitude information to meet the enhanced processing requirements of UAV TIR video streams. To this end, this paper proposes an improved Kalman filter algorithm to improve the geographic registration (geo-registration) accuracy by fusing the positioning and heading data from the dual-antenna real-time kinematic global positioning system (RTK-GPS) with onboard internal measurement unit (IMU) data. This method can yield high-precision position and attitude data in real time based on low-cost UAV hardware, based on which high-precision geo-registration results can be obtained. The computational complexity can be reduced compared with video stream feature tracking algorithms. Furthermore, the problem of unstable matching due to the low resolution and texture level of TIR video streams can be avoided. The experimental results prove that the proposed method can reduce the registration error by 66.15%, and significantly improve the geo-registration accuracy of UAV TIR video streams. Thus, it can strongly support the popularization and practicality of the application of augmented reality (AR) technology to low-cost UAV platforms.

Funder

the Department of Sciences and Technology of the Xinjiang Production and Construction Corps, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. ARGIS-based outdoor underground pipeline information system

2. RescueAR: Augmented reality supported collaboration for UAV driven emergency response systems;Agrawal;arXiv,2021

3. Web AR Solution for UAV Pilot Training and Usability Testing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3