Reuse of Lake Sediments in Sustainable Mortar

Author:

Martellotta Audrey Maria Noemi12ORCID,Petrella Andrea1,Gentile Francesco2ORCID,Levacher Daniel3ORCID,Piccinni Alberto Ferruccio1ORCID

Affiliation:

1. Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy

2. Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy

3. UMR 6143 CNRS—Continental and Coastal Morphodynamics, University of Caen Normandy, 24 rue des Tilleuls, 14000 Caen, France

Abstract

The study analyses the possible valorisation of lake sediments for sustainable mortar, in accordance with the principles of the circular economy, to obtain a sustainable material, since reuse occurs without any kind of preliminary treatment and preserves the consumption of virgin raw materials in the mix design. Moreover, it reduces the amount of water to be used in the mix since part of it is already contained in the sediments. The research was performed on sediments dredged from two artificial reservoirs, Camastra and San Giuliano, located in Basilicata, a region in southern Italy. Cement mortar was prepared by completely replacing, at different quantities, the fine aggregate and, for some of it, partially replacing, at a constant quantity, part of the binder. Workability, mechanical strength, and density were measured, as well as the possible release of contaminants. The investigations made it possible to assess the influence of replacing aggregate with sediment on mortar performance, showing that San Giuliano sediment produces mortar with great workability (~140%), comparable to that of normalised mortar. Similarly, the mechanical strengths of some specimens (SG_s1 and SG_s2) were approximately 60 MPa and 52 MPa, respectively (about 15% higher than that of normalised mortar). On the contrary, for the mortar prepared with the Camastra sediments, both workability and mechanical strength were ~50% lower than normalised mortar. Furthermore, the leaching test did not reveal contaminant release.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3