Assessing Soil Erosion by Monitoring Hilly Lakes Silting

Author:

Giambastiani YamunaORCID,Giusti Riccardo,Gardin Lorenzo,Cecchi Stefano,Iannuccilli MaurizioORCID,Romanelli Stefano,Bottai Lorenzo,Ortolani AlbertoORCID,Gozzini BernardoORCID

Abstract

Soil erosion continues to be a threat to soil quality, impacting crop production and ecosystem services delivery. The quantitative assessment of soil erosion, both by water and by wind, is mostly carried out by modeling the phenomenon via remote sensing approaches. Several empirical and process-based physical models are used for erosion estimation worldwide, including USLE (or RUSLE), MMF, WEPP, PESERA, SWAT, etc. Furthermore, the amount of sediment produced by erosion phenomena is obtained by direct measurements carried out in experimental sites. Data collection for this purpose is very complex and expensive; in fact, we have few cases of measures distributed at the basin scale to monitor this phenomenon. In this work, we propose a methodology based on an expeditious way to monitor the volume of hilly lakes with GPS, sonar sensor and aquatic drone. The volume is obtained by means of an automatic GIS procedure based on the measurements of lake depth and surface area. Hilly lakes can be considered as sediment containers. Time-lapse measurements make it possible to estimate the silting rate of the lake. The volume of 12 hilly lakes in Tuscany was measured in 2010 and 2018, and the results in terms of silting rate were compared with the estimates of soil loss obtained by RUSLE and MMF. The analyses show that all the lakes measured are subject to silting phenomena. The sediment estimated by the measurements corresponds well to the amount of soil loss estimated with the models used. The relationships found are significant and promising for a distributed application of the methodology, which allows rapid estimation of erosion phenomena. Substantial differences in the proposed comparison (mainly found in two cases) can be justified by particular conditions found on site, which are difficult to predict from the models. The proposed approach allows for a monitoring of basin-scale erosion, which can be extended to larger domains which have hilly lakes, such as, for example, the Tuscany region, where there are more than 10,000 lakes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3