A New Testing Facility to Investigate the Removal Processes of Indoor Air Contaminants with Different Cleaning Technologies and to Better Assess and Exploit Their Performances

Author:

Ciccioli PieroORCID,Pallozzi EmanueleORCID,Guerriero Ettore,Iannelli Maria Adelaide,Donati Enrica,Lilla Laura,Rinaldi Carmine,Svaldi Paolo,Ciccioli Paolo,Mabilia Rosanna

Abstract

Residential air cleaners exploiting different technologies re commonly used today to remove air contaminants from indoor environments. Different methods have been developed in the USA and Europe to test their efficiency. The one used in the USA provides a more comprehensive view of indoor processes, because testing is performed in a large simulation chamber (28.5 m3), using anthropogenic emissions, such as cigarette smoke, to generate pollution. Testing rooms are also important to investigate new removal technologies, or to improve them. Since no such testing facilities exist in Italy, one of 12.4 m3 was built in which cigarette smoke, resuspended dust from agricultural soil and, for the first time, diesel exhaust emissions were used to generate indoor pollution. Performances were tested with two air cleaning systems, exploiting completely different removal technologies. Accurate values of decay rates of indoor pollutants were obtained using a suite of on-line and out-of-line monitors for the measurement of particulate matter, volatile organic compounds (VOCs) and some inorganic gases. Proton-transfer mass spectrometry (PTR-MS) provided an almost real-time detection of several VOCs and H2S, at trace levels (0.01 ppbv). A method using a common in vitro bioassay was developed to assess the ability of air cleaners to remove indoor toxic substances.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3