Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials

Author:

Kausar Ayesha123ORCID,Ahmad Ishaq123,Zhu Tianle4,Shahzad Hassan3,Eisa M. H.5ORCID

Affiliation:

1. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa

3. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan

4. School of Space and Environment, Beihang University, Beijing 100191, China

5. Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

Abstract

Due to increasing health and environmental issues, indoor air quality (IAQ) has garnered much research attention with regard to incorporating advanced clean air technologies. Various physicochemical air treatments have been used to monitor, control, and manage air contaminants, such as monitoring devices (gas sensors and internet of things-based systems), filtration (mechanical and electrical), adsorption, UV disinfection, UV photocatalysts, a non-thermal plasma approach, air conditioning systems, and green technologies (green plants and algae). This article reviews presently viable technologies for cleaning indoor air and enhancing IAQ. However, regarding the integration of each technology, there are certain limitations to these methods, including the types of pollutants released. As a result, advanced nanomaterials have been applied to monitoring sensors, filtration and adsorption media, and UV photocatalysts to improve IAQ values. The most important nanomaterials used in this regard include polymeric nanofibrous membranes, nanoporous nanomaterials, nanocomposite hydrogels, polymer/nanocarbon nanocomposite, polymer/metal oxide nanocomposite, polymeric nanohybrids, etc. Accordingly, through the use of nanotechnology, optimal solutions linking IAQ regulation techniques to novel nanomaterials can be achieved to attain safe IAQ levels.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3