Abstract
Selective laser melting (SLM) is well suited for the efficient manufacturing of complex structures because of its manufacturing methodology. The optimized process parameters for each alloy has been a cause for debate in recent years. In this study, the hatch angle and build orientation were investigated. 304L stainless steel samples were manufactured using three hatch angles (0°, 67°, and 105°) in three build orientations (x-, y-, and z-direction) and tested in compression. Analysis of variance and Tukey’s test were used to evaluate the obtained results. Results showed that the measured compressive yield strength and plastic flow stress varied when the hatch angle and build orientation changed. Samples built in the y-direction exhibited the highest yield strength irrespective of the hatch angle; although, samples manufactured using a hatch angle of 0° exhibited the lowest yield strength. Samples manufactured with a hatch angle of 0° flowed at the lowest stress at 35% plastic strain. Samples manufactured with hatch angles of 67° and 105° flowed at statistically the same flow stress at 35% plastic strain. However, samples manufactured with a 67° hatch angle deformed non-uniformly. Therefore, it can be concluded that 304L stainless steel parts manufactured using a hatch angle of 105° in the y-direction exhibited the best overall compressive behavior.
Funder
Support from Intelligent Systems Center (ISC)
Missouri University of Science and Technology
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献