Optimization of Selective Laser Sintering/Melting Operations by Using a Virus-Evolutionary Genetic Algorithm

Author:

Fountas Nikolaos A.ORCID,Kechagias John D.ORCID,Vaxevanidis Nikolaos M.ORCID

Abstract

This work presents the multi-objective optimization results of three experimental cases involving the laser sintering/melting operation and obtained by a virus evolutionary genetic algorithm. From these three experimental cases, the first one is formulated as a single-objective optimization problem aimed at maximizing the density of Ti6Al4V specimens, with layer thickness, linear energy density, hatching space and scanning strategy as the independent process parameters. The second one refers to the formulation of a two-objective optimization problem aimed at maximizing both the hardness and tensile strength of Ti6Al4V samples, with laser power, scanning speed, hatch spacing, scan pattern angle and heat treatment temperature as the independent process parameters. Finally, the third case deals with the formulation of a three-objective optimization problem aimed at minimizing mean surface roughness, while maximizing the density and hardness of laser-melted L316 stainless steel powder. The results obtained by the proposed algorithm are statistically compared to those obtained by the Greywolf (GWO), Multi-verse (MVO), Antlion (ALO), and dragonfly (DA) algorithms. Algorithm-specific parameters for all the algorithms including those of the virus-evolutionary genetic algorithm were examined by performing systematic response surface experiments to find the beneficial settings and perform comparisons under equal terms. The results have shown that the virus-evolutionary genetic algorithm is superior to the heuristics that were tested, at least on the basis of evaluating regression models as fitness functions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3