Manufacturing of Metallic Bipolar Plate Channels by Rolling

Author:

Bauer Alexander,Härtel SebastianORCID,Awiszus Birgit

Abstract

Producing metallic bipolar plates for Proton Exchange Membrane (PEM) fuel cells by forming is still a topic of research. So far, it has mainly been applied for small batches, but it offers substantial advantages regarding both costs and installation space compared to the established graphite based solutions. One new possibility for an efficient manufacturing process of these metallic bipolar plates is the forming by rolling. For the first time, this technology was used for relevant industrial scale channel geometries. By the use of an experimental rolling mill, 0.1 mm thick 316L (1.4404) stainless steel foils were roll-formed to achieve previously designed channel geometries within one rolling pass. The conducted experiments show promising results regarding the forming accuracy and the shape of the channel cross-sections. With the aim for a proof of concept in the beginning and a subsequent optimization of the process, a numerical simulation was set up prior to the real experiments and later calibrated with the experimental forming results. This calibrated model was used for further improvements of the process with the objective at reducing wrinkles and distortion. The investigation of this new process method for the manufacturing of metallic bipolar plates shows enormous potential and can lead to a more efficient and cheaper production.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference13 articles.

1. Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells

2. Brennstoffzellenhttp://www.graebener-maschinentechnik.de/Brennstoffzellen.gmt-brennstoffzellen.0.html

3. Forming metallic micro-feature bipolar plates for fuel cell using combined hydroforming and stamping processes;Osia;Iran. J. Energy Environ.,2013

4. Two-stage forming approach for manufacturing ferritic stainless steel bipolar plates in PEM fuel cell: Experiments and numerical simulations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3