Multi-Cell Cooperative Resource Allocation and Performance Evaluation for Roadside-Assisted Automated Driving

Author:

Yang Shu1,Zhu Xuanhan2,Li Yang2,Yuan Quan2,Li Lili3

Affiliation:

1. China Communications Information & Technology Group Co., Ltd., Beijing 101399, China

2. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Talent Exchange Center, Ministry of Industry and Information Technology, Beijing 100846, China

Abstract

The proliferation of wireless technologies, particularly the advent of 5G networks, has ushered in transformative possibilities for enhancing vehicular communication systems, particularly in the context of autonomous driving. Leveraging sensory data and mapping information downloaded from base stations using I2V links, autonomous vehicles in these networks present the promise of enabling distant perceptual abilities essential to completing various tasks in a dynamic environment. However, the efficient down-link transmission of vehicular network data via base stations, often relying on spectrum sharing, presents a multifaceted challenge. This paper addresses the intricacies of spectrum allocation in vehicular networks, aiming to resolve the thorny issues of cross-station interference and coupling while adapting to the dynamic and evolving characteristics of the vehicular environment. A novel approach is suggested involving the utilization of a multi-agent option-critic reinforcement learning algorithm. This algorithm serves a dual purpose: firstly, it learns the most efficient way to allocate spectrum resources optimally. Secondly, it adapts to the ever-changing dynamics of the environment by learning various policy options tailored to different situations. Moreover, it identifies the conditions under which a switch between these policy options is warranted as the situation evolves. The proposed algorithm is structured in two layers, with the upper layer consisting of policy options that are shared across all agents, and the lower layer comprising intra-option policies executed in a distributed manner. Through experimentation, we showcase the superior spectrum efficiency and communication quality achieved by our approach. Specifically, our approach outperforms the baseline methods in terms of training average reward convergence stability and the transmission success rate. Control-variable experiments also reflect the better adaptability of the proposed method as the environmental conditions change, underscoring the significant potential of the proposed method in aiding successful down-link transmissions in vehicular networks.

Funder

National Key Research and Development Program of China

BUPT Innovation and Entrepreneurship Support Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3