Variability of Potential Soil Nitrogen Cycling Rates in Stormwater Bioretention Facilities

Author:

Rivers Erin N.ORCID,Morse Jennifer L.ORCID

Abstract

Low-impact development (LID) is a common management practice used to infiltrate and filter stormwater through vegetated soil systems. The pollutant reduction potential of these systems is often characterized by a single pollutant removal rate; however, the biophysical properties of soils that regulate the removal of pollutants can be highly variable depending on environmental conditions. The goal of this study was to characterize the variability of soil properties and nitrogen (N) cycling rates in bioretention facilities (BRFs). Soil properties and potential N cycling processes were measured in nine curbside bioretention facilities (BRFs) in Portland, OR during summer and winter seasons, and a subset of six sites was sampled seasonally for two consecutive years to further assess temporal variability in soil N cycling. Potential N cycling rates varied markedly across sites, seasons, and years, and higher variability in N cycling rates was observed among sites with high infiltration rates. The observed seasonal and annual changes in soil parameters suggest that nutrient removal processes in BRFs may be highly variable across sites in an urban landscape. This variability has important implications for predicting the impacts of LID on water quality through time, particularly when estimated removal rates are used as a metric to assess compliance with water quality standards that are implemented to protect downstream ecosystems.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference74 articles.

1. Global Change and the Ecology of Cities

2. Stormwater Phase II Final Rule: Small MS4 Storm Water Program Overview: Fact Sheet 2.0,2000

3. Urban Stormwater Management in the United States,2009

4. The Eco-Techno Spectrum: Exploring Knowledge Systems’ Challenges in Green Infrastructure Management

5. Low-Impact Development: An Integrated Design Approach,1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3