An Amateur-Radio-Based Open-Source (HW/SW) VLF/LF Receiver for Lower Ionosphere Monitoring, Examples of Identified Perturbations

Author:

Malkotsis FilopiminORCID,Politis Dimitrios Z.ORCID,Dimakos Dionisis,Potirakis Stelios M.ORCID

Abstract

The ground-based monitoring of the lower ionosphere by studying the perturbations of the subionospheric propagation of very-low-frequency/low-frequency (VLF/LF) signals is important in the research of a wide variety of geophysical and Sun/space extreme phenomena. Such perturbations are identified as anomalies in the signal received from the VLF/LF transmitters operating worldwide for military purposes, time code broadcasting, etc. Especially for the study of local ionosphere-influencing phenomena, such as earthquakes, volcanoes, typhoons, etc., the monitoring of several subionospheric propagation paths is necessary. However, it is very difficult to find in the market (or reproduce) hardware (HW) for wide-band VLF/LF receivers that could receive many different transmitters, while the involved software (SW) is mainly proprietary. Aiming to provide a low-cost and easy-to-build alternative for the scientists involved in this research field, we suggest a VLF/LF receiver setup based on amateur radio open-source HW and SW. Its key components are the so-called “mini-whip” active antenna and the freeware “SpectrumLab” and “GPS2Time”. The full HW schematics and all settings of the employed SW configuration for the proposed VLF/LF receiver setup are provided in the article. To check the reliability of the proposed receiver setup, two almost identical VLF/LF radio receivers were installed in the prefecture of Attica in Greece, in June and September of 2021, respectively. Examples of ionospheric perturbations due to different phenomena (solar flares, earthquakes, and a magnetic storm) are provided to show the ability of the proposed receiver setup to provide reliable data for ionosphere-related research.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3