Black Alder (Alnus glutinosa (L.) Gaertn.) on Compacted Skid Trails: A Trade-off between Greenhouse Gas Fluxes and Soil Structure Recovery?

Author:

Warlo HannesORCID,von Wilpert Klaus,Lang FriederikeORCID,Schack-Kirchner HelmerORCID

Abstract

The compaction of forest soils can deteriorate soil aeration, leading to decreased CH4 uptake and increased N2O efflux. Black alder (Alnus glutinosa) may accelerate soil structure regeneration as it can grow roots under anaerobic soil conditions. However, symbiotic nitrogen fixation by alder can have undesirable side-effects on greenhouse gas (GHG) fluxes. In this study, we evaluated the possible trade-off between alder-mediated structure recovery and GHG emissions. We compared two directly adjacent 15-year old beech (Fagus sylvatica) and alder stands (loamy texture, pH 5–6), including old planted skid trails. The last soil trafficking on the skid trails took place in 1999. GHG fluxes were measured over one year. Undisturbed plots with beech had a moderately higher total porosity and were lower in soil moisture and soil organic carbon than undisturbed alder plots. No differences in mineral nitrogen were found. N2O emissions in the undisturbed beech stand were 0.4 kg ha−1 y−1 and 3.1 kg ha−1 y−1 in the undisturbed alder stand. CH4 uptake was 4.0 kg ha−1 y−1 and 1.5 kg ha−1 y−1 under beech and alder, respectively. On the beech planted skid trail, topsoil compaction was still evident by reduced macro porosity and soil aeration; on the alder planted skid trail, soil structure of the uppermost soil layer was completely recovered. Skid trail N2O fluxes under beech were five times higher and CH4 oxidation was 0.6 times lower compared to the adjacent undisturbed beech stand. Under alder, no skid-trail-effects on GHG fluxes were evident. Multiple regression modelling revealed that N2O and CH4 emissions were mainly governed by soil aeration and soil temperature. Compared to beech, alder considerably increased net fluxes of GHG on undisturbed plots. However, for skid trails we suggest that black alder improves soil structure without deterioration of the stand’s greenhouse gas balance, when planted only on the compacted areas.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3