Affiliation:
1. Institute of Dendrology Polish Academy of Sciences Kórnik Poland
2. Department of Plant Ecology and Environmental Protection Adam Mickiewicz University in Poznań Poznań Poland
3. Institute of Research on Terrestrial Ecosystems (IRET) National Research Council of Italy (CNR) Monterotondo Italy
4. Skogforsk, The Forestry Research Institute of Sweden Uppsala Sweden
5. Swedish University of Agricultural Sciences Umea Sweden
6. Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
Abstract
AbstractFine roots are an important component of forest soil as they play a key role in fundamental processes like plant nutrition and water supply. As with all the features of forest soil, the compaction related to the forest operations and, in particular, to the wood extraction via ground‐based technologies could lead to a significant impact on the presence of fine roots in the soil affected by the passage of the machines. Considering the lack of a review, we used a meta‐analytic approach to synthesise effect sizes of ground‐based extraction technologies affecting the presence of fine roots in the soil, using a multivariate mixed‐effects meta‐analytic model. The obtained results revealed that the presence of fine roots in the soil affected by the passage of the machines was significantly reduced by both skidding (g = −1.23, 95%CI ‐1.87, −0.60) and forwarding (g = −1.37, 95%CI ‐2.01, −0.74). Due to the higher soil compaction caused by forwarding, this method had a marginally but statistically significant greater impact than skidding. We further confirmed the hypothesis that soil compaction and the presence of fine roots were strongly correlated, with the latter being greatly reduced in compacted soils characterised by higher bulk density. What is more, even more than 20 years after a harvesting intervention, the presence of fine roots was significantly lower in both strip roads (forwarding) and skid trails (skidding) as compared to areas which were not impacted by the machine passage. This shows that fine roots are particularly vulnerable to forest operations. On the other hand, the majority of the trails in the database used for the meta‐analysis were created in countries that favour the creation of a small number of widely used trails. Therefore, it would be scientifically valuable to do a comparative evaluation in various forestry contexts, such as in the Mediterranean area, where the development of the forest trails network is oriented on creating a large number of trails with low traffic volumes. Because machinery‐induced soil compaction is the major driver of the decrease in fine roots in skid trails and strip roads, both the application of best management practices as well as of a smarter planning of the trail network to limit soil compaction are strongly recommended. Both applications are highly recommended to be used in the planning phase and in the practical implementation of logging activities.
Funder
Horizon 2020 Framework Programme
Subject
Soil Science,General Environmental Science,Development,Environmental Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献