Wetland Classification Based on a New Efficient Generative Adversarial Network and Jilin-1 Satellite Image

Author:

He ZhiORCID,He Dan,Mei Xiangqin,Hu Saihan

Abstract

Recent studies have shown that deep learning methods provide useful tools for wetland classification. However, it is difficult to perform species-level classification with limited labeled samples. In this paper, we propose a semi-supervised method for wetland species classification by using a new efficient generative adversarial network (GAN) and Jilin-1 satellite image. The main contributions of this paper are twofold. First, the proposed method, namely ShuffleGAN, requires only a small number of labeled samples. ShuffleGAN is composed of two neural networks (i.e., generator and discriminator), which perform an adversarial game in the training phase and ShuffleNet units are added in both generator and discriminator to obtain speed-accuracy tradeoff. Second, ShuffleGAN can perform species-level wetland classification. In addition to distinguishing the wetland areas from non-wetlands, different tree species located in the wetland are also identified, thus providing a more detailed distribution of the wetland land-covers. Experiments are conducted on the Haizhu Lake wetland data acquired by the Jilin-1 satellite. Compared with existing GAN, the improvement in overall accuracy (OA) of the proposed ShuffleGAN is more than 2%. This work can not only deepen the application of deep learning in wetland classification but also promote the study of fine classification of wetland land-covers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3