Wetlands Classification Using Quad-Polarimetric Synthetic Aperture Radar through Convolutional Neural Networks Based on Polarimetric Features

Author:

Zhang Shuaiying,An Wentao,Zhang Yue,Cui Lizhen,Xie Chunhua

Abstract

Wetlands are the “kidneys” of the earth and are crucial to the ecological environment. In this study, we utilized GF-3 quad-polarimetric synthetic aperture radar (QP) images to classify the ground objects (nearshore water, seawater, spartina alterniflora, tamarix, reed, tidal flat, and suaeda salsa) in the Yellow River Delta through convolutional neural networks (CNNs) based on polarimetric features. In this case, four schemes were proposed based on the extracted polarimetric features from the polarization coherency matrix and reflection symmetry decomposition (RSD). Through the well-known CNNs: AlexNet and VGG16 as backbone networks to classify GF-3 QP images. After testing and analysis, 21 total polarimetric features from RSD and the polarization coherency matrix for QP image classification contributed to the highest overall accuracy (OA) of 96.54% and 94.93% on AlexNet and VGG16, respectively. The performance of the polarization coherency matrix and polarimetric power features was similar but better than just using three main diagonals of the polarization coherency matrix. We also conducted noise test experiments. The results indicated that OAs and kappa coefficients decreased in varying degrees after we added 1 to 3 channels of Gaussian random noise, which proved that the polarimetric features are helpful for classification. Thus, higher OAs and kappa coefficients can be acquired when more informative polarimetric features are input CNNs. In addition, the performance of RSD was slightly better than obtained using the polarimetric coherence matrix. Therefore, RSD can help improve the accuracy of polarimetric SAR image classification of wetland objects using CNNs.

Funder

National Natural Science Foundation of China

National Major Science and Technology Special Scientific Research Project of China’s High-resolution Earth Observation System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3