Spatial-Spectral Multiple Manifold Discriminant Analysis for Dimensionality Reduction of Hyperspectral Imagery

Author:

Shi Guangyao,Huang HongORCID,Liu Jiamin,Li Zhengying,Wang Lihua

Abstract

Hyperspectral images (HSI) possess abundant spectral bands and rich spatial information, which can be utilized to discriminate different types of land cover. However, the high dimensional characteristics of spatial-spectral information commonly cause the Hughes phenomena. Traditional feature learning methods can reduce the dimensionality of HSI data and preserve the useful intrinsic information but they ignore the multi-manifold structure in hyperspectral image. In this paper, a novel dimensionality reduction (DR) method called spatial-spectral multiple manifold discriminant analysis (SSMMDA) was proposed for HSI classification. At first, several subsets are obtained from HSI data according to the prior label information. Then, a spectral-domain intramanifold graph is constructed for each submanifold to preserve the local neighborhood structure, a spatial-domain intramanifold scatter matrix and a spatial-domain intermanifold scatter matrix are constructed for each sub-manifold to characterize the within-manifold compactness and the between-manifold separability, respectively. Finally, a spatial-spectral combined objective function is designed for each submanifold to obtain an optimal projection and the discriminative features on different submanifolds are fused to improve the classification performance of HSI data. SSMMDA can explore spatial-spectral combined information and reveal the intrinsic multi-manifold structure in HSI. Experiments on three public HSI data sets demonstrate that the proposed SSMMDA method can achieve better classification accuracies in comparison with many state-of-the-art methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3