A CNN Ensemble Based on a Spectral Feature Refining Module for Hyperspectral Image Classification

Author:

Yao WeiORCID,Lian ChengORCID,Bruzzone LorenzoORCID

Abstract

In the study of hyperspectral image classification based on machine learning theory and techniques, the problems related to the high dimensionality of the images and the scarcity of training samples are widely discussed as two main issues that limit the performance of the data-driven classifiers. These two issues are closely interrelated, but are usually addressed separately. In our study, we try to kill two birds with one stone by constructing an ensemble of lightweight base models embedded with spectral feature refining modules. The spectral feature refining module is a technique based on the mechanism of channel attention. This technique can not only perform dimensionality reduction, but also provide diversity within the ensemble. The proposed ensemble can provide state-of-the-art performance when the training samples are quite limited. Specifically, using only a total of 200 samples from each of the four popular benchmark data sets (Indian Pines, Salinas, Pavia University and Kennedy Space Center), we achieved overall accuracies of 89.34%, 95.75%, 93.58%, and 98.14%, respectively.

Funder

National Natural Science Foundation of China

State Scholarship Fund of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conventional to Deep Ensemble Methods for Hyperspectral Image Classification: A Comprehensive Survey;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. The Tensor Discriminant Ridge Regression Model With Extreme Learning Machine for Hyperspectral Image Classification;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3