A Radar Radial Velocity Dealiasing Algorithm for Radar Data Assimilation and its Evaluation with Observations from Multiple Radar Networks

Author:

He GuangxinORCID,Sun Juanzhen,Ying Zhuming,Zhang Lejian

Abstract

Automated and accurate radar dealiasing algorithms are very important for their assimilation into operational numerical weather forecasting models. A radar radial velocity dealiasing algorithm aimed at radar data assimilation is introduced and assessed using from several S-band and C-band radar observations under the severe weather conditions of hurricanes, typhoons, and deep continental convection in this paper. This dealiasing algorithm, named automated dealiasing for data assimilation (ADDA), is a further development of the dealiasing algorithm named the China radar network (CINRAD) improved dealiasing algorithm (CIDA), originally developed for China’s CINRAD (China Next Generation Weather Radar) radar network. The improved scheme contains five modules employed to remove noisy data, select the suitable first radial, preserve the convective regions, execute multipass dealiasing in both azimuthal and radial directions and conduct the final local dealiasing with an error check. This new dealiasing algorithm was applied to two hurricane cases, two typhoon cases, and three intense-convection cases that were observed from the CINRAD of China, Taiwan‘s radar network, and NEXRAD (Next Generation Weather Radar) of the U.S. with a continuous period of more than 12 h for each case. The dealiasing results demonstrated that ADDA performed better than CIDA for all selected cases. This algorithm not only produced a high success rate for the S-band radar, but also a reasonable performance for the C-band radar.

Funder

National Key Research and Development Project

National Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3