Green Synthesis of Silver Nanoparticles Using Jacobaea maritima and the Evaluation of Their Antibacterial and Anticancer Activities

Author:

Althubiti Amal A.1,Alsudir Samar A.2,Alfahad Ahmed J.3,Alshehri Abdullah A.1ORCID,Bakr Abrar A.1ORCID,Alamer Ali A.1ORCID,Alrasheed Rasheed H.4,Tawfik Essam A.1ORCID

Affiliation:

1. Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia

2. Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia

3. Institute of Waste Management and Recycling Technologies, Sustainability & Environment Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia

4. Institute of Refinery and Petrochemicals, Energy and Industry Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia

Abstract

Much attention has been gained on green silver nanoparticles (green-AgNPs) in the medical field due to their remarkable effects against multi-drug resistant (MDR) microorganisms and targeted cancer treatment. In the current study, we demonstrated a simple and environment-friendly (i.e., green) AgNP synthesis utilizing Jacobaea maritima aqueous leaf extract. This leaf is well-known for its medicinal properties and acts as a reducing and stabilizing agent. Nanoparticle preparation with the desired size and shape was controlled by distinct parameters; for instance, temperature, extract concentration of salt, and pH. The characterization of biosynthesized AgNPs was performed by the UV-spectroscopy technique, dynamic light scattering, scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared. The successful formation of AgNPs was confirmed by a surface plasmon resonance at 422 nm using UV-visible spectroscopy and color change observation with a particle size of 37± 10 nm and a zeta potential of −10.9 ± 2.3 mV. SEM further confirmed the spherical size and shape of AgNPs with a size varying from 28 to 52 nm. Antibacterial activity of the AgNPs was confirmed against all Gram-negative and Gram-positive bacterial reference and MDR strains that were used in different inhibitory rates, and the highest effect was on the E-coli reference strain (MIC = 25 μg/mL). The anticancer study of AgNPs exhibited an IC50 of 1.37 μg/mL and 1.98 μg/mL against MCF-7 (breast cancer cells) and A549 (lung cancer cells), respectively. Therefore, this green synthesis of AgNPs could have a potential clinical application, and further in vivo study is required to assess their safety and efficacy.

Funder

Health Sector laboratories’ resources at King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3