Green Synthesis of Silver Nanoparticles Using the Tridax procumbens Plant Extract and Screening of Its Antimicrobial and Anticancer Activities

Author:

Pungle Rohini12,Nile Shivraj Hariram3,Makwana Nilesh4,Singh Ragini5,Singh Rana P.5,Kharat Arun S.4ORCID

Affiliation:

1. Department of Biotechnology, Shiv Chhatrapati College, Aurangabad 431003, India

2. Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Subcampus, Osmanabad 413501, India

3. Laboratory of Medicinal Plant and Food Biotechnology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China

4. Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India

5. Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India

Abstract

In this study, we report the green synthesis of silver nanoparticles (AgNPs) using the aqueous leaf extract of Tridax procumbens (TNP), which acts as the source of the reducing and capping agent. The distinctive absorption at 370 nm suggested synthesis of TNPs, which was confirmed by TEM, with a size in the range of 11.1 nm to 45.4 nm and a spherical shape, having a face-centered cubic structure, analyzed by XRD, and a Zeta potential of -20.7 mV, which indicated a moderate stability of TNP. The FTIR analysis revealed the presence of amines and hydroxyl groups with fluoro compounds over the TNPs. The HRLC-MS analysis of TNPs suggested the presence of a major capping agent such as fosinopril and reducing agents such as peptides (Gln Gly Ala, Ser Pro Asn, and Leu Met), terpenoids (lupanyl acid, tiamulin), polyphenol (peucenin), and alkaloids (8 ,10 -dihydroxydihydroergotamine, carteolol). The synthesized silver nanoparticles exhibited antimicrobial activity against multidrug-resistant (MDR) clinical isolates (Escherichia coli, Shigella spp., Aeromonas spp., Pseudomonas aeruginosa, and Candida tropicalis) and had anticancer activity against A459 (IC50 42.70 μg/ml). The extraction of partially purified aqueous leaf extracts by silica gel column chromatography followed by HPLC to synthesize silver nanoparticles (TNP11) and analyzed by HRLC-MS suggested that dipeptides were involved in the reduction of Ag+ to Ag0. Overall, the results showed that the green silver nanoparticles of T. procumbens could be safe, as they are endowed with potential antimicrobial activity against MDR clinical isolates and human lung carcinoma cells.

Funder

DST

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3