Mathematical Modeling of the Displacement of a Light-Fuel Self-Moving Automobile with an On-Board Liquid Crystal Elastomer Propulsion Device

Author:

Qiu Yunlong1,Chen Jiajing1,Dai Yuntong1ORCID,Zhou Lin2,Yu Yong1ORCID,Li Kai1ORCID

Affiliation:

1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

2. School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China

Abstract

The achievement and control of desired motions in active machines often involves precise manipulation of artificial muscles in a distributed and sequential manner, which poses significant challenges. A novel motion control strategy based on self-oscillation in active machines offers distinctive benefits, such as direct energy harvesting from the ambient environment and the elimination of complex controllers. Drawing inspiration from automobiles, a self-moving automobile designed for operation under steady illumination is developed, comprising two wheels and a liquid crystal elastomer fiber. To explore the dynamic behavior of this self-moving automobile under steady illumination, a nonlinear theoretical model is proposed, integrating with the established dynamic liquid crystal elastomer model. Numerical simulations are conducted using the Runge-Kutta method based on MATLAB software, and it is observed that the automobile undergoes a supercritical Hopf bifurcation, transitioning from a static state to a self-moving state. The sustained periodic self-moving is facilitated by the interplay between light energy and damping dissipation. Furthermore, the conditions under which the Hopf bifurcation occurs are analyzed in detail. It is worth noting that increasing the light intensity or decreasing rolling resistance coefficient can improve the self-moving average velocity. The innovative design of the self-moving automobile offers advantages such as not requiring an independent power source, possessing a simple structure, and being sustainable. These characteristics make it highly promising for a range of applications including actuators, soft robotics, energy harvesting, and more.

Funder

University Natural Science Research Project of Anhui Province

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3