Affiliation:
1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
2. School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
Abstract
The achievement and control of desired motions in active machines often involves precise manipulation of artificial muscles in a distributed and sequential manner, which poses significant challenges. A novel motion control strategy based on self-oscillation in active machines offers distinctive benefits, such as direct energy harvesting from the ambient environment and the elimination of complex controllers. Drawing inspiration from automobiles, a self-moving automobile designed for operation under steady illumination is developed, comprising two wheels and a liquid crystal elastomer fiber. To explore the dynamic behavior of this self-moving automobile under steady illumination, a nonlinear theoretical model is proposed, integrating with the established dynamic liquid crystal elastomer model. Numerical simulations are conducted using the Runge-Kutta method based on MATLAB software, and it is observed that the automobile undergoes a supercritical Hopf bifurcation, transitioning from a static state to a self-moving state. The sustained periodic self-moving is facilitated by the interplay between light energy and damping dissipation. Furthermore, the conditions under which the Hopf bifurcation occurs are analyzed in detail. It is worth noting that increasing the light intensity or decreasing rolling resistance coefficient can improve the self-moving average velocity. The innovative design of the self-moving automobile offers advantages such as not requiring an independent power source, possessing a simple structure, and being sustainable. These characteristics make it highly promising for a range of applications including actuators, soft robotics, energy harvesting, and more.
Funder
University Natural Science Research Project of Anhui Province
National Natural Science Foundation of China
Anhui Provincial Natural Science Foundation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献