Magnetically Actuated Fiber‐Based Soft Robots

Author:

Lee Youngbin12,Koehler Florian23,Dillon Tom4,Loke Gabriel12,Kim Yoonho4,Marion Juliette12,Antonini Marc‐Joseph2,Garwood Indie C.5,Sahasrabudhe Atharva267,Nagao Keisuke12,Zhao Xuanhe48,Fink Yoel129,Roche Ellen T.410,Anikeeva Polina12611ORCID

Affiliation:

1. Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

2. Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge MA 02139 USA

3. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA 02139 USA

4. Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

5. Harvard/MIT Health Science & Technology Graduate Program Cambridge MA 02139 USA

6. McGovern Institute for Brain Research Massachusetts Institute of Technology Cambridge MA 02139 USA

7. Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA

8. Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

9. Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Cambridge MA 02139 USA

10. Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA

11. Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA

Abstract

AbstractBroad adoption of magnetic soft robotics is hampered by the sophisticated field paradigms for their manipulation and the complexities in controlling multiple devices. Furthermore, high‐throughput fabrication of such devices across spatial scales remains challenging. Here, advances in fiber‐based actuators and magnetic elastomer composites are leveraged to create 3D magnetic soft robots controlled by unidirectional fields. Thermally drawn elastomeric fibers are instrumented with a magnetic composite synthesized to withstand strains exceeding 600%. A combination of strain and magnetization engineering in these fibers enables programming of 3D robots capable of crawling or walking in magnetic fields orthogonal to the plane of motion. Magnetic robots act as cargo carriers, and multiple robots can be controlled simultaneously and in opposing directions using a single stationary electromagnet. The scalable approach to fabrication and control of magnetic soft robots invites their future applications in constrained environments where complex fields cannot be readily deployed.

Funder

National Science Foundation

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3