Bioinspired hydrophobic pseudo-hydrogel for programmable shape-morphing

Author:

Deng Heng1,Xianchen XuORCID,Wang Zhigang1,Chai Zefan2,Hu Yuhang1,Huang Tony3ORCID,Zhang Cheng4ORCID,Collyer Wesley3,Yan Chunjie1

Affiliation:

1. China University of Geosciences

2. Univrsity of Missouri, Columbia

3. Duke University

4. Nanjing Agricultural University

Abstract

Abstract

Inspired by counterintuitive water-swelling ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we introduce a novel material—hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves water-swelling through capillary forces and surface tension, presenting an unexpected water-swelling capability in hydrophobic matrices. We establish a theoretical framework elucidating the interplay of poro-elasto-capillary and surface tension forces, providing insights into the swelling behavior. By systematically programming the pore structure, we demonstrate tunable, anisotropic, and programmable swelling. This leads to dedicated self-shaping transformations. Incorporating magnetic particles, we engineer HPH-based soft robots capable of swimming, rolling, and walking. This study demonstrates a unique approach to achieve water-responsive behavior in hydrophobic materials, expanding the possibilities for programmable shape-morphing in soft materials and soft robotic applications.

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Chromosome Translocation Inflates Bacillus Forespores and Impacts Cellular Morphology;Lopez-Garrido J;Cell,2018

2. Effects of nano-carbon reinforcement on the swelling and shrinkage behaviour of soil;Taha MR;Sains Malaysiana,2018

3. Poro-elasto-capillary wicking of cellulose sponges;Ha J;Sci Adv,2018

4. Greenhouse gas emissions of biobased diapers containing chemically modified protein superabsorbents;Capezza AJ;J Clean Prod,2023

5. Extreme water uptake of hygroscopic hydrogels through maximized swelling‐induced salt loading;Graeber G;Adv Mater,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3