Navigation of an Autonomous Wheeled Robot in Unknown Environments Based on Evolutionary Fuzzy Control

Author:

Chou Ching-Yu,Juang Chia-FengORCID

Abstract

Navigation of a wheeled robot in unknown environments is proposed in this paper. The approach may be applied to navigating an autonomous vehicle in unknown environments, such as parking lots. The navigation consists of three parts: obstacle avoidance behavior, target seeking behavior, and a behavior supervisor. The obstacle avoidance behavior is achieved by controlling the robot to move along an obstacle boundary through evolutionary fuzzy control. In the evolutionary fuzzy control approach, a Pareto set of fuzzy controllers (FCs) is found though a multi-objective continuous ant colony optimization algorithm. Target seeking behavior is achieved by controlling the robot through hybrid proportional–integral–derivative (PID) controllers. The behavior supervisor determines the switching between obstacle avoidance and target seeking behaviors, where the dead-cycle problem is considered. Simulations and experiments were performed to verify the effectiveness of the proposed navigation scheme.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3