Mobile Visual Servoing Based Control of a Complex Autonomous System Assisting a Manufacturing Technology on a Mechatronics Line

Author:

Simion GeorgianORCID,Filipescu AdrianORCID,Ionescu Dan,Șolea RăzvanORCID,Cernega DanielaORCID,Mincă Eugenia,Filipescu Adriana

Abstract

The main contribution of this paper is the modeling and control for a complex autonomous system (CAS). It is equipped with a visual sensor to operate precision positioning in a technology executed on a laboratory mechatronics line. The technology allows the retrieval of workpieces which do not completely pass the quality test. Another objective of this paper is the implementation of an assisting technology for a laboratory processing/reprocessing mechatronics line (P/RML) containing four workstations, assisted by the following components: a complex autonomous system that consists of an autonomous robotic system (ARS), a wheeled mobile robot (WMR) PeopleBot, a robotic manipulator (RM) Cyton 1500 with seven degrees of freedom (7 DOF), and a mobile visual servoing system (MVS) with a Logitech camera as visual sensor used in the process of picking, transporting and placing the workpieces. The purpose of the MVS is to increase the precision of the RM by utilizing the look and move principle, since the initial and final positions of the CAS can slightly deviate from their trajectory, thus increasing the possibility of errors to appear during the process of catching and releasing the pieces. If the processed piece did not pass the quality test and has been rendered as defective, it is retrieved from the last station of the P/RML and transported to the first station for reprocessing. The control of the WMR is done using the trajectory-tracking sliding-mode control (TTSMC). The RM control is based on inverse kinematics model, and the MVS control is implemented with the image moments method.

Publisher

MDPI AG

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-Robot Interactive System for Warehouses using Speech SLAM and Deep Learning-based Barcode Recognition;Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments;2024-06-26

2. Digital Twin Based a Processing Technology Assisted by a MCPRS, Ready for Industry 5.0;2023 27th International Conference on System Theory, Control and Computing (ICSTCC);2023-10-11

3. Editorial Note for the Special Issue: Perspectives and Challenges in Doctoral Research—Selected Papers from the 10th Edition of the Scientific Conference of the Doctoral Schools from the “Dunărea de Jos”;Inventions;2023-05-17

4. Complex Autonomous System Assisting a Manufacturing Technology on a Mechatronics Line. A Digital Twin Approach;2022 26th International Conference on System Theory, Control and Computing (ICSTCC);2022-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3