Polypropylene and Graphene Nanocomposites: Effects of Selected 2D-Nanofiller’s Plate Sizes on Fundamental Physicochemical Properties

Author:

Patra Sarat Chandra,Swain Sumit,Senapati PragyanORCID,Sahu Himadri,Murmu Rabiranjan,Sutar HarekrushnaORCID

Abstract

The authors developed a nanocomposite using polypropylene (PP) and graphene nanoplatelets (GNPs) with a melt mixing method. Virgin PP was filled with three sets of GNPs with a fixed thickness (15 nm) and surface area (50–80 m2/g). The selected H-type GNPs had three different sizes of 5, 15 and 25 µm. The nanocomposites were made by loading GNPs at 1, 2 and 3 wt.%. Mechanical analysis was carried out by performing tensile, flexural and impact strength tests. The crystalline, micro-structural, thermal and dynamic mechanical properties were assessed through XRD, FESEM, PLM, DSC, TGA and DMA tests. It was observed that all three types of GNPs boosted the mechanical strength of the polymer composite. Increasing the nanofiller size decreased the tensile strength and the tensile modulus, increased the flexural strength and flexural modulus, and increased the impact strength. Maximum tensile strength (≈41.18 MPa) resulted for the composite consisting 3 wt.% H5, whereas maximum flexural (≈50.931 MPa) and impact (≈42.88 J/m) strengths were observed for nanocomposite holding 3 wt.% H25. Graphene induced the PP’s crystalline phases and structure. An improvement in thermal stability was seen based on the results of onset degradation (TD) and melting (Tm) temperatures. Graphene increased the crystallization (Tc) temperatures, and acted like a nucleating agent. The experimental analysis indicated that the lateral size of graphene plays an important role for the nanocomposite’s homogeneity. It was noted that the small-sized GNPs improved dispersion and decreased agglomeration. Thus overall, small-sized GNPs are preferable, and increasing the lateral size hardly establishes feasible characteristics in the nanocomposite.

Publisher

MDPI AG

Subject

General Engineering

Reference68 articles.

1. Polymer composites with graphene nanofillers: Electrical properties and applications;Tjong;J. Nanosci. Nanotechnol.,2014

2. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites;Sengupta;Prog. Polym. Sci.,2011

3. Graphene-based materials: Graphene and graphene oxide: Synthesis, properties, and applications;Zhu;Adv. Mater.,2010

4. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review;Ma;Compos. Part A Appl. Sci. Manuf.,2010

5. Mechanical properties of graphene and graphene-based nanocomposites;Papageorgiou;Prog. Mater. Sci.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3