Micrographite (μG) and Polypropylene (PP) Composites: Preparation and Influence of Filler Content on Property Modifications

Author:

Dharai Rabindra1,Sutar Harekrushna2ORCID,Murmu Rabiranjan2ORCID,Roy Debashis1

Affiliation:

1. Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India

2. Department of Chemical Engineering, Indira Gandhi Institute of Technology, Sarang 759146, India

Abstract

It is difficult to select low-cost filler materials. Specifically, carbon-based filling materials are a matter of concern, and developing a carbon-filled polymer composite with enhanced properties is necessary. In this study, the authors developed a polymer composite using virgin polypropylene (PP) as a matrix and affordable micrographite (µG) as a filler. The developed composite has many potential applications in the automotive, aerospace, and electronic industries. To prepare the test specimens, the composite was prepared using a twin-screw extruder containing 3, 6, 9, 12, or 15 wt.% µG powder (BET surface area ≈ 29 m2/g; particle size > 50 µm) followed by injection molding. Different mechanical properties like the tensile, flexural, and impact strengths were determined. The prepared composites were further characterized by means of XRD, TGA, DSC, FTIR, DMA, FESEM, and PLM tests. The results were analyzed and compared with those for PP. Improved tensile (up to ≈ 34 MPa) and flexural (up to ≈ 40 MPa) strength was observed with an increase in the µG content. However, the impact strength continuously decreased (maximum ≈ 32 J/m for PP) with fractures. These findings underscore that graphite plays a significant role in controlling the deformation behavior and ultimate strength of composites. An XRD analysis revealed that adding graphite restructured the crystalline arrangement of PP and altered the composite’s crystallographic properties. Nonetheless, no induction effect (β-phase formation) was observed. A moderate enhancement in the thermal stability was observed owing to a small increase in the melt (Tm), onset (Tonset), and residual (TR) temperatures. A microstructural analysis showed that the micrographite powder strongly prevented spherulite growth and modified the graphite powder’s rate of dispersion and agglomeration in a polymer matrix. The results show that graphite could be a viable low-cost alternative carbon-based filler material in polypropylene matrices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3