Radio Wave Attenuation Measurement System Based on RSSI for Precision Agriculture: Application to Tomato Greenhouses

Author:

Cama-Pinto DoraORCID,Holgado-Terriza Juan AntonioORCID,Damas-Hermoso MiguelORCID,Gómez-Mula Francisco,Cama-Pinto AlejandroORCID

Abstract

Precision agriculture and smart farming are concepts that are acquiring an important boom due to their relationship with the Internet of Things (IoT), especially in the search for new mechanisms and procedures that allow for sustainable and efficient agriculture to meet future demand from an increasing population. Both concepts require the deployment of sensor networks that monitor agricultural variables for the integration of spatial and temporal agricultural data. This paper presents a system that has been developed to measure the attenuation of radio waves in the 2.4 GHz free band (ISM- Industrial, Scientific and Medical) when propagating inside a tomato greenhouse based on the received signal strength indicator (RSSI), and a procedure for using the system to measure RSSI at different distances and heights. The system is based on Zolertia Re-Mote nodes with the Contiki operating system and a Raspberry Pi to record the data obtained. The receiver node records the RSSI at different locations in the greenhouse with the transmitter node and at different heights. In addition, a study of the radio wave attenuation was measured in a tomato greenhouse, and we publish the corresponding obtained dataset in order to share with the research community.

Publisher

MDPI AG

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3