A Deep Learning Model of Radio Wave Propagation for Precision Agriculture and Sensor System in Greenhouses

Author:

Cama-Pinto DoraORCID,Damas MiguelORCID,Holgado-Terriza Juan AntonioORCID,Arrabal-Campos Francisco ManuelORCID,Martínez-Lao Juan Antonio,Cama-Pinto AlejandroORCID,Manzano-Agugliaro FranciscoORCID

Abstract

The production of crops in greenhouses will ensure the demand for food for the world’s population in the coming decades. Precision agriculture is an important tool for this purpose, supported among other things, by the technology of wireless sensor networks (WSN) in the monitoring of agronomic parameters. Therefore, prior planning of the deployment of WSN nodes is relevant because their coverage decreases when the radio waves are attenuated by the foliage of the plantation. In that sense, the method proposed in this study applies Deep Learning to develop an empirical model of radio wave attenuation when it crosses vegetation that includes height and distance between the transceivers of the WSN nodes. The model quality is expressed via the parameters cross-validation, R2 of 0.966, while its generalized error is 0.920 verifying the reliability of the empirical model.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Analytics in Agriculture;Smart Agritech;2024-09-13

2. LSTM Networks for Home Energy Efficiency;Designs;2024-08-09

3. Internet-of-Things for smart irrigation control and crop recommendation using interactive guide-deep model in Agriculture 4.0 applications;Network: Computation in Neural Systems;2024-07-31

4. Enhancing efficiency in agriculture: densely connected convolutional neural network for smart farming;Signal, Image and Video Processing;2024-06-06

5. Pneumonia Classification using deep learning: a comparative study;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3