Solution of Steady Incompressible MHD Problems with Quasi-Least Square Method

Author:

Hussain ShahidORCID,Rahman Shams ur,Abbas Suhail,Abbas Munawwar Ali

Abstract

A quasi-least-squares (QLS) mixed finite element method (MFE) based on the L2-inner product is utilized to solve an incompressible magnetohydrodynamic (MHD) model. These models are associated with the three unknown terms, i.e., fluid velocity, fluid pressure, and magnetic field. For the MHD-based models, common theories and algorithms for approximation of the solutions are not always applicable because of the choice of the functional spaces during the utilization of the weak formulation. It is well known that the spaces used for the approximation of the different unknowns, e.g., the spaces for the unknowns, cannot be chosen independently for the variational formulation, and may have to satisfy strict stability conditions such as the inf-sup, or Ladyzhenskaya–Babuska–Brezzi (LBB) condition. The dependency of the selection of the spaces for the unknowns are critical and always not applicable for some pair of unknowns. Because of this, the numerical or theoretical solutions must have to face some stability issue. The proposed scheme (L2-inner product) is introduced to circumvent this deficiency of the conditions (inf-sup or LBB) and obtained a well-posed solution theoretically. The model equations are nonlinear and highly coupled with the combination of Navier–Stokes and Maxwell relations. First, these nonlinear models are made linear around a specific state wherein the modified system represents an algebraic equation in a first-order symmetric form. Secondly, a direct iteration technique is applied to solve the nonlinearities and obtain a theoretical convergent rate for a general initial guess. Theoretical results show that only a single parameter with a single initial guess is sufficient to establish the well-posedness of the solution.

Publisher

MDPI AG

Subject

General Engineering

Reference47 articles.

1. Existence of Electromagnetic-Hydrodynamic Waves

2. Magnetohydrodynamic ship propulsion with superconducting magnets

3. Review of magnetohydrodynamic pump applications

4. MAGNETOHYDRODYNAMICS IN MATERIALS PROCESSING

5. Numerical Analysis of a Finite Element, Crank-Nicolson Discretization for MHD Flow at Small Magnetic Reynolds Number;Yuksel,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3