A Linear Stabilized Incompressible Magnetohydrodynamic Problem with Magnetic Pressure

Author:

Hussain Shahid1ORCID,Bakhet Ahmed12ORCID,AlNemer Ghada3ORCID,Zakarya Mohammed4ORCID

Affiliation:

1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China

2. Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

3. Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 105862, Riyadh 11656, Saudi Arabia

4. Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

Abstract

The objective of this article is to examine, stabilize, and linearize the incompressible magnetohydrodynamic model equations. The approximate solutions are carried out through the lowest equal order mixed finite element (FE) approach, involving variables such as fluid velocity, hydro pressure, magnetic field, and magnetic pressure. The formulation of the variational form for the approximate solution necessitates the use of a pair of approximating spaces. However, these spaces cannot be arbitrarily chosen; they must adhere to strict stability conditions, notably the Ladyzhenskaya–Babuska–Brezzi (LBB) or inf-sup condition. This study addresses the absence of stabilization and linearization techniques in the incompressible magnetohydrodynamic model equations using the lowest equal order mixed finite element approach. The article introduces a stabilization technique to meet two stability conditions, proving its existence and uniqueness. This novel approach was not previously explored in the literature. The proposed stabilized technique does not necessitate parameters or computing higher-order derivatives, making it computationally efficient. The study offers numerical tests demonstrating optimal convergence and effectiveness of the revised approach in two-dimensional settings.

Funder

King Khalid Univeristy

Princess Nourah bint Abdulrahman University Researchers

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3