FEA Assessment of Contact Pressure and Von Mises Stress in Gasket Material Suitability for PEMFCs in Electric Vehicles

Author:

Park Soo-Hyun1,Kareem Akeem Bayo12ORCID,Joo Woo Jeong3,Hur Jang-Wook12

Affiliation:

1. Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea

2. Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si 39177, Republic of Korea

3. Pyung Hwa Oil Seal Co. Limited, 597, Nongong-ro, Nongong-eup, Dalseong-gun, Daegu 42982, Republic of Korea

Abstract

Ensuring the safety of electric vehicles is paramount, and one critical concern is the potential for hazardous hydrogen fuel leaks caused by the degradation of Proton-Exchange Membrane Fuel Cell (PEMFC) gasket materials. This study employs advanced techniques to address this issue. We leverage Finite Element Analysis (FEA) to rigorously assess the suitability of gasket materials for PEMFC applications, focusing on two crucial conditions: ageing and tensile stress. To achieve this, we introduce a comprehensive “dual degradation framework” that considers the effects of contact pressure and von Mises stress. These factors are instrumental in evaluating the performance and durability of Liquid Silicon Rubber (LSR) and Ethylene Propylene Diene Monomer (EPDM) materials. Our findings reveal the Yeoh model as the most accurate and efficient choice for ageing simulations, boasting a minimal Mean Absolute Percentage Error (MAPE) and computational time of just 0.27 s. In contrast, the Ogden model, while accurate, requires more computational resources. In assessing overall model performance using MAE, Root Mean Square Error (RMSE), and R-squared metrics, both LSR and EPDM materials proved promising, with LSR exhibiting superior performance in most areas. Furthermore, our study incorporates uniaxial tensile testing, which yields RMSE and MAE values of 0.30% and 0.40%, respectively. These results provide valuable insights into material behaviour under tensile stress. Our research underscores the pivotal role of FEA in identifying optimal gasket materials for PEMFC applications. Notably, LSR is a superior choice, demonstrating enhanced FEA modelling performance under ageing and tensile conditions. These findings promise to significantly contribute to developing safer and more reliable electric vehicles by advancing gasket material design.

Funder

the Technology Innovation Program

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3