A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants

Author:

Pourrahmani HosseinORCID,Siavashi MajidORCID,Yavarinasab Adel,Matian Mardit,Chitgar Nazanin,Wang Ligang,Van herle Jan

Abstract

Proton-exchange membrane fuel cells (PEMFCs) are regarded as promising alternatives to internal combustion engines (ICEs) to reduce pollution. Recent research on PEMFCs focuses on achieving higher power densities, reducing the refueling time, mitigating the final price, and decreasing the degradations, to facilitate the commercialization of hydrogen mobility. The design of bipolar plates and compression kits, in addition to their coating, can effectively improve performance, increase durability, and support water/thermal management. Past reviews usually focused on the specific aspect, which can hardly provide readers with a complete picture of the key challenges facing and advances in the long-term performance of PEMFCs. This paper aims to deliver a comprehensive source to review, from both experimental, analytical and numerical viewpoints, design challenges, degradation modeling, protective coatings for bipolar plates, and key operational challenges facing and solutions to the stack to prevent contamination. The significant research gaps in the long-term performance of PEMFCs are identified as (1) improved bipolar-plate design and coating, (2) the optimization of the design of sealing and compression kits to reduce mechanical stresses, and (3) stack degradation regarding fuel contamination and dynamic operation.

Funder

European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3