A Generalized Unit Commitment and Economic Dispatch Approach for Analysing the Polish Power System under High Renewable Penetration

Author:

Pluta Marcin,Wyrwa ArturORCID,Suwała Wojciech,Zyśk JanuszORCID,Raczyński Maciej,Tokarski Stanisław

Abstract

The achievement of carbon neutrality requires a deep transformation of the Polish power sector. This paper analyses the impact of increased electricity generation from wind and solar technologies envisaged in the newest version of the Energy Policy of Poland until 2040 on the operation of dispatchable generators in 2030. The analysis was carried out using the Model of Economic Dispatch and Unit commitment for System Analysis (MEDUSA) model, which solves a mixed integer problem related to unit commitment and economic dispatch in electrical power production. At first, the model was validated based on the real operation data from 2018. Next, five scenarios were built to analyse the operation of the system in 2030. The overall result of the study is that the safest solution from the point of view of power system stability is to extend the decommissioning of coal units of 200 and 300 MW classes, to invest in renewable energy sources (RES) according to the energy policy, to build new gas power plants with the total capacity of ca. 4 GW, and to enforce Demand Side Management (DSM) programs for shifting the electrical load. The proposed framework for the optimization of power system planning helps to avoid wrong investment decisions that would have a negative impact on energy prices.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Proposal for a Regulation of the European Parliament and of the Council Establishing the Framework for Achieving Climate neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law),2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3