Author:
Xiao Yelong,Yao Pingping,Zhou Haibin,Zhang Zhongyi,Gong Taimin,Zhao Lin,Deng Minwen
Abstract
A sensitivity analysis of braking speed and normal load on tribological properties of copper metal matrix composites (Cu-MMCs) was investigated using a subscale dynamometer. The morphologies of the worn surface and subsurface were observed by a scanning electron microscope and 3D video microscope. The results indicated that temperatures on the Cu-MMC surface increased with increasing the braking speed and normal load. The average coefficient of friction gradually decreased as the braking speed or normal load increased, and a slight decrease in the wear rate with increasing the braking speed up to 17 m/s after which a clear increasing trend was observed. As the normal load increased from 612 N to 1836 N, the wear rate decreased firstly and then promptly decreased. The transition in wear mechanism of Cu-MMC significantly depended on braking speed and normal load.
Funder
the National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities of Central South University
Subject
General Materials Science,Metals and Alloys
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献