Spatial Prediction Models for Soil Stoichiometry in Complex Terrains: A Case Study of Schrenk’s Spruce Forest in the Tianshan Mountains

Author:

Wang Yao,Zheng Yi,Liu Yan,Huang Jian,Mamtimin AliORCID

Abstract

Spatial patterns of soil carbon (C), nitrogen (N) and phosphorus (P) and their stoichiometric characteristics (C:N:P) play an important role in nutrient limitations, community dynamics, nutrient use efficiency and biogeochemical cycles, etc. To date, the spatial distributions of soil organic C at various spatial scales have been extensively studied, whereas little is known about the spatial patterns of N and P and C:N:P ratios in various landscapes, especially across complex terrains. To fill this gap, we estimated the spatial patterns of concentrations of soil C, N and P and C:N:P ratios in Schrenk’s spruce (Picea schrenkiana Fisch. & C. A. Mey.) forest in the Tianshan Mountains based on data from soil cores collected from 2012 to 2017, and using the following four regression models: multiple linear regression, stepwise regression, ridge regression and lasso regression. We found the following: (1) elevation and climatic variables jointly contributed to concentrations of C, N and P and C:N:P ratios, (2) soil C, N and P concentrations, and their stoichiometric ratios, demonstrated continual spatial patterns in Schrenk’s spruce forest, (3) Multiple linear regression could be reliably used to estimate the spatial patterns of soil elemental concentrations and stoichiometric ratios in mountainous terrain. We suggest that more independent variables (including biotic, abiotic and anthropogenic factors) should be considered in future works. Additionally, adjustment of multiple linear regression and other models should be used for a better delineation of spatial patterns in the concentrations of soil elements and stoichiometric ratios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3