Leaf carbon, nitrogen, and phosphorus ecological stoichiometry of grassland ecosystems along 2,600-m altitude gradients at the Northern slope of the Tianshan Mountains

Author:

Wang Yao,Xu Zhonglin

Abstract

Ecological stoichiometry of terrestrial ecosystems has been a hot issue in current research, with intense focus on the proportional relationships of nutritional elements within plants and between plants and their environment. To clarify these relationships along continuous environmental gradients is essential for a more comprehensive understanding how plants adapt to a changing environment. In arid regions, the varying plant and soil types along altitude gradients offer a unique opportunity to examine the vertical spectrum of plant and soil ecological stoichiometry. In this study, the northern slope of the Tianshan Mountains was selected as the study area to explore the carbon (C), nitrogen (N), and phosphorus (P) ecological stoichiometric characteristics of herbaceous plants along 900-m–3,500-m altitude gradients. We also investigated the variation of ecological stoichiometric characteristics among different grassland types. The results indicated that the mean C, N, and P in leaf of grassland were 342.95 g·kg−1–557.73 g·kg−1, 6.02 g·kg−1–20.97 g·kg−1, and 0.71 g·kg−1–3.14 g·kg−1, respectively. There was no significant change in leaf carbon content along the elevation gradient, and the highest and lowest leaf C concentrations were in the upland meadow and the semidesert grasslands. Both N and P concentrations obtained their highest value in the meadow steppe. The P concentration gradually increased in desert and semidesert grasslands and reached the highest value in the meadow steppe, and then decreased to the lowest value in the upland meadow and subsequently increased in the alpine meadow. The ranges of the C:N ratio, C:P ratio, and N:P ratio were 16.36–155.53, 109.36–786.52, and 2.58–17.34, respectively. Due to fluctuations in the P concentration, the C:P ratio and N:P ratio reached the lowest value in the meadow steppe and obtained their highest value in the upland meadow. Redundancy analysis showed that temperature was the dominant factor affecting the C, N, and P ecological stoichiometry of herbaceous plants, followed by soil organic carbon, mean annual precipitation, soil pH, and soil electrical conductivity. Corresponding results could enhance predictive models of nutrient cycling and ecosystem responses to climate change, particularly in arid and semiarid regions.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

Frontiers Media SA

Reference71 articles.

1. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus of plant photosynthetic organs in Aibi Lake Basin, Xinjiang;Abdurahman;Chin. J. Ecol.,2015

2. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling;Allen;Ecol. Lett.,2009

3. Reverse diversity–biomass patterns in grasslands are constrained by climates and stoichiometry along an elevational gradient;Bai;Sci. Total Environ.,2024

4. Bioavailability index for quantitative evaluation of plant availability of extractable soil trace elements;Chen;Plant Soil,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3