Application of Artificial Intelligence for Predicting Erosion of Biochar Amended Soils

Author:

Garg Ankit,Wani Insha,Kushvaha VinodORCID

Abstract

Recently, incentives have been provided in developed countries by the government for commercial production of biochar for soil treatment, and other construction uses with an aim to reduce a significant amount of carbon emissions by 2030. Biochar is an important material for the development of circular economy. This study aims to develop a simple Artificial Neural Network (ANN) based model to predict erosion of biochar amended soils (BAS) under varying conditions (slope length, slope gradient, rainfall rate, degree of compaction (DoC), and percentage of biochar amendments). Accordingly, a model has been developed to estimate the total erosion rate and total water flow rate as a function of the above conditions. The model was developed based on available data from flume experiments. Based on ANN modelling results, it was observed that slope length was the most important factor in determining total erosion rate, followed by slope gradient, DoC, and percentage of biochar amendment. The percentage of biochar amendment was a leading factor in the total water flow rate determination as compared to other factors. It was also found that the reduction in erosion is relatively minimal during an increase in slope length up to 1.55 m, reducing sharply beyond that. At a slope length of 2 m, erosion is found to be reduced by 33% (i.e., 2.6 to 1.75), whereas the total flow rate decreases linearly from 1250 mL/m2/min to 790 mL/m2/min. The ANN model developed shows that soil biochar composite (SBC) with 5% biochar amendment gave the best results in reducing soil erosion. This study can be a helpful tool in providing preliminary guidelines for using biochar in erosion control.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3