A new method for preventing sidewall preferential flow in the internal erosion simulation using un-resolved CFD–DEM

Author:

Liu Leilei,Chen Rui,Li Zhaofeng,Zhou ChaoORCID,Li Xiaojiao

Abstract

AbstractAccurately assessing the erodibility of geomaterials is of great significance for the design of earthen structures and the prevention of the associated failure induced by seepage force. Recently, the un-resolved Computational Fluid Dynamics–Discrete Element Method (CFD–DEM) has been widely used to investigate internal erosion. However, due to the use of wall boundary and the fact that the fixed CFD domain cannot be changed with the soil sample’s volume contraction during the erosion test, a larger porosity at the boundary of the CFD domain is commonly formed, resulting in sidewall preferential flow (i.e., relatively more fine particles migrate along the boundary of the DEM domain) and thereby overestimating the soil erodibility. In this study, a new method based on particle boundary is developed to tackle this problem. The newly proposed particle boundary can prevent its particles from erosion via inter-particle bonding and transfer stress from servo walls to the simulated sample. An optimal particle boundary thickness is determined by considering sample contraction and computational efficiency. The performance of the new method was compared with the conventional method and also verified using experimental results. The results show that the newly proposed method has significantly improved the uniformity of fluid velocity distribution. Furthermore, the cumulative eroded mass of fine particles in the new model is approximately 15% lower than in the conventional model. It is convincingly demonstrated that the new method can simulate internal erosion better and give a more accurate assessment of geomaterial erodibility.

Funder

National Natural Science Foundation of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Hong Kong Polytechnic University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3