Abstract
This paper proposes a new optical configuration for a two-axis surface encoder that can measure the in-plane (X-axis) and out-of-plane (Z-axis) displacements of a positioning stage. The two-axis surface encoder is composed of a scale grating and a sensor head. A transparent grating is employed in the sensor head for measurement of the Z-directional displacement of the scale grating based on the Fizeau-type measurement method; a reference beam reflected from the transparent grating and the zeroth-order diffracted beam from the scale grating are superimposed to generate an interference signal. A pair of prisms and a beam splitter are also employed in the sensor head, so that the positive and negative first-order diffracted beams can be superimposed over a long working distance to generate an interference signal for measurement of the X-directional displacement of the scale grating. Focusing on the new, extended Z-directional measurement mechanism, proof-of-principle experiments were carried out to verify the feasibility of the proposed optical configuration for the surface encoder that can measure the uni-directional displacements of a scale grating along the X- and Z-axis. Experimental results from the developed optical configuration demonstrated the achievement of a Z-directional measuring range of ±1.5 mm.
Funder
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献