Active Disturbance Rejection Control in Magnetic Bearing Rotor Systems with Redundant Structures

Author:

Cheng Baixin,Cheng XinORCID,Song Shao,Wu Huachun,Hu Yefa,Zhou Rougang,Deng Shuai

Abstract

At present, magnetic bearings are a better energy-saving choice than mechanical bearings in industrial applications. However, there are strongly coupled characteristics in magnetic bearing–rotor systems with redundant structures, and uncertain disturbances in the electrical system as well as external disturbances, and these unfavorable factors degrade the performance of the system. To improve the anti-interference performance of magnetic bearing systems, this paper proposes the inverse of the current distribution matrix W−1 meaning that the active disturbance rejection control simulation model can be carried out without neglecting the current of each coil. Firstly, based on the working mechanism of magnetic bearings with redundant structures and the nonlinear electromagnetic force model, the current and displacement stiffness models of magnetic bearings are established, and a dynamic model of the rotor is constructed. Then, according to the dynamic model of the rotor and the mapping relationship between the current of each coil and the electromagnetic force of the magnetic bearing, we established the equivalent control loop of the magnetic bearing–rotor system with redundant structures. Finally, on the basis of the active disturbance rejection control (ADRC) strategy, we designed a linear active disturbance rejection controller (LADRC) for magnetic bearings with redundant structures under the condition of no coil failure, and a corresponding simulation was carried out. The results demonstrate that compared to PID+current distribution control strategy, the LADRC+current distribution control strategy proposed in this paper is able to effectively improve the anti-interference performance of the rotors supported by magnetic bearings with redundant structures.

Funder

Shenzhen Science and technology R&D

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Active Disturbances Rejection Control Strategy of Water-Lubricated Bearing Lubrication System;2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI);2023-08-09

2. Influence of displacement sensor runout on active magnetic bearing-rotor system and control analysis;Journal of Vibration and Control;2023-05-30

3. The Influence of Magnetic Field of AMB on Eddy-Current Sensor Operation;Sensors;2023-02-20

4. Development of Crash Avoidance Technology for Turbo-molecular Pumps;2022 2nd International Conference on Computers and Automation (CompAuto);2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3