Characterization and Disinfection by Product Formation of Dissolved Organic Matter in Anaerobic–Anoxic–Oxic Membrane Bioreactor (AAO-MBR) Process

Author:

Ren Xueli1,Wang Feng2,Zhang Yajing1,Wang Jiali3,Miao Hengfeng145

Affiliation:

1. School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China

2. Wuxi Ecological Environment Monitoring Center, Wuxi 214122, China

3. Yixing Ecological Environment Monitoring Station, Wuxi 214122, China

4. Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China

5. Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China

Abstract

In the process of sewage treatment, the characteristics of dissolved organic matter (DOM) are always changed during chemical and biological processes, affecting the generation of disinfection by-products (DBPs) compositions at the following disinfection stage. The present study systematically investigated the effect of DOM characterization on C- and N-DBPs formation at AAO-MBR reactor when treating wastewater. The results showed that the AAO-MBR treatment process could efficiently eliminate dissolved organic carbon (DOC) and ammonium nitrogen (NH4+-N) from wastewater with an elimination rate of 89% and 98%, respectively. Most of the precursors (i.e., 56.8% C-DBPs and 78.1% N-DBPs) were removed at the MBR unit, while AGC and AAO units promoted the formation of DBPs precursors. More specifically, soluble microbial products (SMPs) and humus acid were increased, which led to improved C- and N-DBPs via aerated grit chamber (AGC) treatment. At the AAO treatment unit, the content of low MW hydrophobic SMPs, humus acid, and polysaccharides was increased, indicating low MW and HPO fractions dominating the C- and N-DBPs. MBR treatment improved C-DBPs in high MW and HPO fractions and N-DBPs in low MW and HPO fractions, which is explained by higher MW hydrophobic SMPs and humus acids, compared to the AAO unit. The present study provided deep insight into the linkage of DOM characteristics and C- and N-DBPs formation at each treatment unit during the AAO-MBR process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China (NSFC)

national major science and technology projects for water pollution control and treatment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3