Modeling Method for Aerobic Zone of A2O Based on KPCA-PSO-SCN

Author:

Lu Wenxia1,Tian Xueyong1,Ma Yongguang1,Guan Yinyan1,Liu Libo1,Shi Liwei1

Affiliation:

1. School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China

Abstract

Sewage treatment plants face significant problems as a result of the annual growth in urban sewage discharge. Substandard sewage discharge can also be caused by rising sewage treatment expenses and unpredictable procedures. The most widely used sewage treatment process in urban areas is the Anaerobic–Anoxic–Oxic (A2O) sewage treatment process. Therefore, modeling the sewage treatment process and predicting the effluent quality are of great significance. A process modeling method based on Kernel Principal Component Analysis–Particle Swarm Optimization–Stochastic Configuration Network (KPCA-PSO-SCN) is proposed for the A2O aerobic wastewater treatment process. Firstly, eight auxiliary variables were determined through mechanism analysis, including Chemical Oxygen Demand (COD) and ammonia nitrogen (NH4+) and nitrate nitrogen (NO3−) of influent water, pH, temperature (T), Mixed Liquor Suspended Solid (MLSS), Dissolved Oxygen (DO) and hydraulic residence time (HRT) in the aerobic zone. Dimensionality reduction was carried out using the kernel principal component analysis method based on the Gaussian function, and the eight-dimensional data were changed to five-dimensional data, which improved the running speed and efficiency of subsequent models. Then, according to the advantages of the particle swarm optimization algorithm, such as low calculation cost and fast convergence, combined with the advantages of stochastic configuration network general approximation performance, the PSO-SCN model was established to predict the three water quality indexes of effluent COD, NH4+, and NO3− for the aerobic zone. The experimental results proved the effectiveness of the model. Compared with classic water quality prediction algorithm models such as SCN, PSO-BP, RBF, PSO-RBF, etc., the superiority of the PSO-SCN algorithm model was demonstrated.

Funder

Department of Science and Technology of Liaoning Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3