Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation

Author:

Vélez-Guerrero Manuel AndrésORCID,Callejas-Cuervo MauroORCID,Mazzoleni Stefano

Abstract

Neuromotor rehabilitation and recovery of upper limb functions are essential to improve the life quality of patients who have suffered injuries or have pathological sequels, where it is desirable to enhance the development of activities of daily living (ADLs). Modern approaches such as robotic-assisted rehabilitation provide decisive factors for effective motor recovery, such as objective assessment of the progress of the patient and the potential for the implementation of personalized training plans. This paper focuses on the design, development, and preliminary testing of a wearable robotic exoskeleton prototype with autonomous Artificial Intelligence-based control, processing, and safety algorithms that are fully embedded in the device. The proposed exoskeleton is a 1-DoF system that allows flexion-extension at the elbow joint, where the chosen materials render it compact. Different operation modes are supported by a hierarchical control strategy, allowing operation in autonomous mode, remote control mode, or in a leader-follower mode. Laboratory tests validate the proper operation of the integrated technologies, highlighting a low latency and reasonable accuracy. The experimental result shows that the device can be suitable for use in providing support for diagnostic and rehabilitation processes of neuromotor functions, although optimizations and rigorous clinical validation are required beforehand.

Funder

Universidad Pedagógica y Tecnológica de Colombia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3