AC Tie-Line Power Oscillation Mechanism and Peak Value Calculation for a Two-Area AC/DC Parallel Interconnected Power System Caused by LCC-HVDC Commutation Failures

Author:

Sun Li,Liu Hongbo,Ma Chenglian

Abstract

With the rapid development of ultra-high-voltage (UHV) AC/DC, especially the step-by-step upgrading of the UHV DC transmission scale, security presents new challenges. Commutation failure (CF) is a common fault in line commutated converter (LCC) high-voltage direct current (HVDC) power systems. Once failure happens, it may cause power oscillations in a system. In this paper, taking a two-area AC/DC parallel interconnected power system as the example, based on the impulse response model of second-order linear system, the mechanism of power oscillation on the AC tie-line caused by CF are clarified. It is proved that the peak value of the AC tie-line power oscillation is mainly determined by the DC power and the equivalent CF duration, the frequency and damping ratio of dominant area oscillation mode. Meanwhile, the peak time is mainly determined by the oscillation frequency. Finally, the correctness and effectiveness of the algorithms are verified by a simulation analysis of an extended IEEE-39-bus AC/DC parallel interconnected power system. These research results can provide a basis for the arrangement of the operating modes and the formulation of control measures for interconnected power grids.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3